Manifold-based synthetic oversampling with manifold conformance estimation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimax Manifold Estimation

We find the minimax rate of convergence in Hausdorff distance for estimating a manifold M of dimension d embedded in R given a noisy sample from the manifold. Under certain conditions, we show that the optimal rate of convergence is n−2/(2+d). Thus, the minimax rate depends only on the dimension of the manifold, not on the dimension of the space in which M is embedded.

متن کامل

Manifold-based surfaces with boundaries

We present a manifold-based surface construction extending the C∞ construction of Ying and Zorin (2004a). Our surfaces allow for pircewise-smooth boundaries, have user-controlled arbitrary degree of smoothness and improved derivative and visual behavior. 2-flexibility of our surface construction is confirmed numerically for a range of local mesh configurations.

متن کامل

Nonlocal Estimation of Manifold Structure

We claim and present arguments to the effect that a large class of manifold learning algorithms that are essentially local and can be framed as kernel learning algorithms will suffer from the curse of dimensionality, at the dimension of the true underlying manifold. This observation invites an exploration of nonlocal manifold learning algorithms that attempt to discover shared structure in the ...

متن کامل

Data-based Manifold Reconstruction via Tangent Bundle Manifold Learning

The goal of Manifold Learning (ML) is to find a description of low-dimensional structure of an unknown q-dimensional manifold embedded in high-dimensional ambient Euclidean space R p , q < p, from their finite samples. There are a variety of formulations of the problem. The methods of Manifold Approximation (MA) reconstruct (estimate) the manifold but don’t find a low-dimensional parameterizati...

متن کامل

Beyond the Boundaries of SMOTE - A Framework for Manifold-Based Synthetically Oversampling

Problems of class imbalance appear in diverse domains, ranging from gene function annotation to spectra and medical classification. On such problems, the classifier becomes biased in favour of the majority class. This leads to inaccuracy on the important minority classes, such as specific diseases and gene functions. Synthetic oversampling mitigates this by balancing the training set, whilst av...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2017

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-017-5670-4